Error analysis for the solution of fuzzy differential equations using orthogonal basis functions
نویسندگان
چکیده
منابع مشابه
FUZZY INTEGRO-DIFFERENTIAL EQUATIONS: DISCRETE SOLUTION AND ERROR ESTIMATION
This paper investigates existence and uniqueness results for the first order fuzzy integro-differential equations. Then numerical results and error bound based on the left rectangular quadrature rule, trapezoidal rule and a hybrid of them are obtained. Finally an example is given to illustrate the performance of the methods.
متن کاملSolution of fuzzy differential equations
Hybrid system is a dynamic system that exhibits both continuous and discrete dynamic behavior. The hybrid differential equations have a wide range of applications in science and engineering. The hybrid systems are devoted to modeling, design, and validation of interactive systems of computer programs and continuous systems. Hybrid fuzzy differential equations (HFDEs) is considered by ...
متن کاملthe use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach
abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...
15 صفحه اولThe method of radial basis functions for the solution of nonlinear Fredholm integral equations system.
In this paper, An effective and simple numerical method is proposed for solving systems of integral equations using radial basis functions (RBFs). We present an algorithm based on interpolation by radial basis functions including multiquadratics (MQs), using Legendre-Gauss-Lobatto nodes and weights. Also a theorem is proved for convergence of the algorithm. Some numerical examples are presented...
متن کاملThe use of radial basis functions by variable shape parameter for solving partial differential equations
In this paper, some meshless methods based on the local Newton basis functions are used to solve some time dependent partial differential equations. For stability reasons, used variably scaled radial kernels for constructing Newton basis functions. In continuation, with considering presented basis functions as trial functions, approximated solution functions in the event of spatial variable wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications on Advanced Computational Science with Applications
سال: 2017
ISSN: 2196-2499
DOI: 10.5899/2017/cacsa-00085